Plaque Excision in Limb Salvage Beyond the SilverHawk in Treating Critical Limb Ischemia

Roger Gammon, MD

SilverHawk Device

Distal Tip: Cutter

Driver Attachment

Proximal End

Magnified View of Carbide Blade

Three-Step Procedure

Austin 😽 Heart

Deliver the catheter to proximal end of target lesion, pull back thumb switch to activate cutter.

- 2. Advance the cutter through lesion, collecting tissue in the nosecone.
- 3. Push the thumb switchforward, and either torque the catheter to treat additional areas, or retract the catheter.

SilverHawk Catheters

Large Vessel, Ext. Length (LX) Large Vessel, Standard (LS) Small Vessel, Ext. Length (SX) Small Vessel, Standard (SS) Extra Small Vessel, (ES) Austin 🚼 Heart

Plaque excision samples

The TALON Registry

Purpose:

- Web-based* outcomes tracking system designed to evaluate acute and long term outcomes of patients treated with the SilverHawk in the lower extremity peripheral vasculature
- Correlate patient outcomes, histology findings and genomic profiles

Endpoints:

6 and 12 month TLR

Registry population

Consecutive SilverHawk patients; lower extremity peripheral vasculature

Baseline Clinical Characteristics

Age (average): Male: DM%: Claudication history: Prior MI, CABG, PCI: Prior peripheral intervention: History of Smoking: History of Hypertension:

(N=728) 70 ± 11 years (57.2%)(50.2%)(96.5%)(54.9%)(62.0%)(65.9%)(85.3%)

Rutherford Becker (of SH treated limb):

	<u>N</u>	<u>%</u>
	27	3.0%
1	77	8.6%
2	176	19.6%
3	342	38.1%
4	151	16.8%
5	115	12.8%
6	9	1.0%

Average ABI^1 : 0.71 (pre) – 0.86 (post)

¹N=427- only patients with pre and post values included

Total Patients: 335
Limbs: 420
Lesions: 658
Total Procedures: 427

12-month Freedom From Target Lesion Revascularization

12-month Freedom From TLR – Single Lesions

Cardiovascular Institute of the South (CIS)

- Total Patients with 12-month CT angio follow-up: 89
- Number of Lesions Treated¹: 102
- TASC B, C, or D lesions: 71.8%
- Rutherford-Becker 5 or 6: 86.1%
- Average Lesion Length: 17.6 cm
- Target Lesion Revascularization (TLR) Rate: 13.4%

 Angiographic Primary Patency Rate²: 80%

1. SFA-Popliteal accounted for 88.1% of lesions treated

2. Using CT Angiography

Source: Allie, David. "CIS 12-Month Overall Experience." Presented at New Advances in Critical Limb Ischemia meeting. Chicago, IL, May 21, 2005.

Heart

Procedural and Clinical Outcomes with Catheter-based Plaque Excision in Critical Limb Ischemia David Kandzari, et. al.

Journal of Endovascular Therapy, February 2006

Multi-center CLI Study

PURPOSE:

To examine the safety and efficacy associated with plaque excision (PE) in patients with CLI undergoing percutaneous revascularization

METHOD:

- SilverHawk was performed in 69 patients (76 limbs, 159 lesions) with RB≥5 and clinical outcomes were prospectively followed for 6 months at 7 institutions.
- Primary endpoint was major adverse events at 30 days (death, MI, unplanned amputation, repeat TVR).
- Visible healing of ulcerated tissue, device success (<50% final residual diameter stenosis), avoidance of amputation, and performance of less extensive amputation than initially planned were also assessed.

Heart

David Kandzari, et. al. "Procedural and Clinical Outcomes with Catheter-Based Plaque Excision in Critical Limb Ischemia". Journal of Endovascular Therapy (JEVT), February 2006.

Multi-center CLI Study

RESULTS:

- TLR = 4% and no unplanned amputations.
- Amputation avoided or a less extensive amputation was performed in 92% of patients at 30 days and 82% at 6 months
- Procedural success = 99%
- Major adverse events occurred in 1% of patients at 30 days and 23% at 6 months

CONCLUSIONS:

PE is a safe and effective method for patients with CLI

David Kandzari, et. al. "Procedural and Clinical Outcomes with Catheter-Based Plaque Excision in Critical Limb Ischemia". Journal of Endovascular Therapy (JEVT), February 2006.

SilverHawk Limb Salvage Data

	Gammon ¹	Motarjame ²	Turley ³
Patients	57	71	115
Limbs	57	83	134
Lesions	157		411
Limb Salvage*	93%	91%	92%

*Defined as freedom from amputation, or lesser part amputation than planned

- 1. Roger Gammon, MD, Austin Heart Hospital. "Long Term Lesion Patency And Freedom From Limb Amputation: A Unique Treatment Option For Critically Ischemic Lower Limbs." Presentation at TCT 2005.
- 2. Amir Motarjame, MD, Midwest Vascular Institutue. Presented to FoxHollow employees, August 26, 2005, Redwood City, CA.
- 3. Brian Turley, MD, Vascular & Interventional Specialists, Conroe Regional Medical Center. Presented to physicians at Texas Silverhavk Summit, November 12, 2005, Dallas, TX.

SilverHawk Plaque Excision in Diabetes

ILIAC STENTING Restenosis is substantially increased in diabetics

Leville et al., J Vasc Surg 2006 43, 32

*retrospective study of 89 consecutive patients with symptomatic iliac occlusions (TASC-B,C,D), at Cleveland Clinic Austin Austin Heart

ATK ANGIOPLASTY: Restenosis is substantially increased in diabetics

Eur J Vasc Endovasc Surgery 2004 28, 410

Austin 🚼 Heart

* Prospective study of 116 lesions treated with PTA or subintimal angioplasty, in Haukeland University Hospital, Norway

<u>ATK Nitinol Stenting</u>: Restenosis is substantially increased in diabetics – lesions > 10cm

Sabeti et al. (Schillinger), JEVT (2005) 12, 6-12

SilverHawk (TALON) Diabetics vs Non-Diabetics

TLR is similar for DM and non-DM after SH excision of *de novo* ATK lesions

Austin **X** Heart

CLAUDICANTS: TLR is similar for DM and non-DM after SH excision of *de novo* ATK lesions

Austin 🬟 Heart

<u>CTOs:</u> TLR is similar for DM and non-DM after SH excision of *de novo* ATK lesions

TLR is similar for DM and non-DM after SH excision of *de novo* BTK lesions

Austin 📩 Heart

PTA/Stenting Forces Plaque into the Injured Vessel Wall

Hypothesis: An accelerant for restenosis is present in diabetic plaque

Analysis of Plaque Gene Expression

Rosetta Inpharmatics 40K gene system (Affymetrix/Agilent)

FHT/Merck Plaque Analysis Is Identifying Genes Differentially Expressed in Diabetic Plaque

	1
	Diabetic
	Non-Diabetic
Ausuin	H

Gene expression in diabetic plaque

Clinical Trial Evidence Supports Optimal Debulking

Guided Plaque Excision

 Optimal Plaque Removal Lower Restenosis
 Precision and Guidance Cut Direction
 Cut Depth Estimation

TECHNOLOGICAL SOLUTION

Integrated Optical Coherence
 Imaging

TEAM EXECUTION

 OUS Peripheral Feasibility September, 2006 (< 1 year Concept to Clinical Use)

Vascular Imaging

Fluoroscopy

- Standard of Practice
- Identifies Vessel Narrowing
- Longitudinal Positioning
- Single Plane Rotational Orientation

Intravascular Imaging

- Identify characteristics of plaque hidden in the vessel wall
- Precise rotational orientation of the disease and device

Intravascular Ultrasound (IVUS)

- Good visualization through blood
- Resolution (~100 300 μm)
- Depth penetration (~5 7 mm)

Optical Coherence Tomography (OCT)

- Very limited visualization through blood
- Resolution (~10 20 μm)
- Depth penetration (~2 3 mm)

In Vitro Imaging Comparison

Same Porcine Coronary Wall: Visualized with Both IVUS and OCT

IVUS – 40 MHz

FoxHollow OCT Gen

Austin 🚼 Heart

Catheter Design

- LS, SS, and SX Nighthawk Devices
 Nighthawk SX is a non-packing device
- 0.1 mm Torque Shaft Embedded Fiber Optics
 - Crossing Profile or Torque Transmission Maintained
 - Telecom Single Mode Fiber, 155 micron OD
- Image in cutting plane
 ~ 3 mm proximal to cutter

NightHawk Image: M-Mode Waterfall

In Vitro Images

In Vitro Porcine Coronary Wall: Single Frame

CONFIDENTIAL

Austin - Heart

Integrated Optical Coherence Tomography (OCT)

... A Deeper Look

Imaging and Cutting

Image during cut.

- As the cutter engages, adventitia rises.
- Indicative of removal of disease.
- Predictive power watching the adventitia.

Plaque

Device OD

Cutter

Post-Cut Device Retraction

- A post cut survey pass reveals plaque removal
 - Small thickness of media.
 - No exposed adventitia

Cut Start

Plaque

Cut Length

Time

Device OD

Plaque Identification

- Plaque development
 - Intimal Hyperplasia
 - Separation of endothelium and IEL.
 - Media largely unaffected at this stage.

Austin **K** Heart

Example Images: Poland **Feasibility**

Adventitia

Plaque

OCT v. Fluoro: Poland Feasibility

OCT vs. Histology

OCT image displays complex structure of disease

Calcium and Lipid Pools?

Thin cap fibroatheroma (TCFA)
 Lipid filled pocket with thin fibrotic cap.

"Vulnerable plaque"

Current Trials

- NightHawk IDE Trial
 PROOF
 STEP-UP & BTK Trial
 PATENT-SFA
- Merck Collaboration Trials

required similar rates of adjunctive therapy in DM and non-DM

SH excision of *de novo* ATK lesions required similar rates of adjunctive therapy in DM and non-DM

Catheter Optical Design

Fiber runs in a small lumen on the torque shaft

Optical Coherence Tomography

Optical analog to Ultrasound
 Send out a pulse of light

Listen for the return.

- Difference is the speed in tissue.
 - Ultrasound 1500 m/s.
 - Light 2x10⁸ m/s
- 2 mm propagation
 - Sound 2.7 microseconds (10⁻⁶)
 - 20 picoseconds (10⁻¹²)

Principles of Operation

- Cannot measure time-of-flight directly.
- Can measure the beat frequency between

Principles of Operation

 Source sweeps in frequency rapidly (5x10¹⁷ Hz²)

• $t = 0 > \text{frequency } \omega_0$

• $t = \Delta T_1 > \omega_1$: $t = \Delta T_2 > \omega_2$: $t = \Delta T_3 > \omega_3$

• Beat Frequency = $\omega_0 - \omega_1 : \omega_0 - \omega_2 : \omega_0 - \omega_3$ • 20×10^{-12} seconds x 5×10^{17} Hz² = 10MHz^{-10}

Effect of Frame Transformation

• As ΔT_i increases so does the beat frequency.

- 0 3 mm propagation (in air)
- DC ~12 MHz beat frequency
- Well with range of contemporary electronics.

NightHawk Image Review In Vitro Pig Coronary

Apposition Assessment

Phasic blood-related image loss
 Mixture of blood and saline
 Cutter opens

 Device is "urged" up against the vessel wall.

